Abstract

Fast atom bombardment (FAB) mass spectrometry provides useful structural information about salen complexes and salen-based oxo transfer catalysts that are not appreciably soluble in organic solvents. It was discovered that initial dissolution of these complexes in trifluoroacetic acid was crucial for producing good FAB mass spectra. Trifluoroacetic acid helps dissolve the salen-based catalysts, concentrates the analyte molecules at the matrix surface, and most importantly, suppresses the reduction process, which is a well-known phenomenon when protic matrices are used. The best FAB matrices for these catalysts were found to be thioglycerol and “magic bullet.” However, dechlorination occurred under the acid conditions for complexes containing iron chloride and manganese chloride. Demetalation also occurred for nickel-containing oxo transfer salen-based complexes. When the salen-based complexes are soluble in LC solvents, they can be analyzed easily by atmospheric pressure chemical ionization (APCI) mass spectrometry without the employment of relatively nonvolatile matrices. In addition, APCI/MS provides much more sensitive detection for manganese-salen complexes when compared with FAB results. No dechlorination or demetalation were observed when a negative ion mode APCI was employed. To our knowledge, this is the first time that an intact molecule of this type of complex has been observed by mass spectrometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.