Abstract

This paper analyses the dominant mechanisms of slope failures and identifies potential obstacles to landslide-hazard reduction at the Iva Valley area, Enugu, Nigeria. The landscape is replete with landslide scars and gullies of varied sizes and the slope deposits comprise unconsolidated, friable sands inter-bedded with thin units of montmorillonitic claystone. Forty-three landslide events were identified in the study area with most being shallow, short run-out movements with slip-surface depth <2 m. The study found the landslides mainly occur in the beginning of rainy season characterized by short duration, high intensity rainfall. An integrated approach comprising field mapping, laboratory tests and numerical analyses reveals that the barren nature of the slopes prior to the outset of rainy season, high rainfall intensity, erosion, overgrazing, soil characteristics and the site’s unique lithologic sequence are the main causes of instability. Shearing tests under several conditions showed that the soils strongly strain-soften until low steady-state strength is achieved. A computer code, based on this strength reduction technique, used input parameters obtained from the field and laboratory studies to simulate a landslide with similar structure, travel distance and distribution area. It is noted that urbanization has gradually increased the vulnerability of the society’s poor to landslide hazards as they now erect unplanned residence (tents and blocks) on the slopes. This work is part of a regional study aimed at finding ways of protecting the vulnerable by generating data that could be used to build future landslide susceptibility map.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call