Abstract

Members of the plant mycobiota are all associated to varying degrees with the development of plant diseases. Although many reports on the plant mycobiota are well documented, the relationships between mycobiota of Rosa roxburghii and plant diseases are poorly understood. Mutual interactions and extent of the roles of microbial communities associated with R. roxburghii and the source of pathogens are still unclear, and more research is needed on the health benefits of this ecologically important population. Using high-throughput sequencing, we analyzed the mycobiota composition and ecological guilds of the rhizosphere, root, and phyllosphere of healthy and diseased R. roxburghii from the Tianfu R. roxburghii Industrial Park in Panzhou city, Guizhou province. Analysis of community composition showed that the relative abundance of pathogens of leaf spot, including Alternaria, Pestalotiopsis and Neofusicoccum in the phyllosphere of diseased plant (LD), were 1.15%, 0.15% and 0.06%, and the relative abundance of Alternaria and Pestalotiopsis were 0.96% and 0.58% in healthy plant (LH). The alpha diversity indices indicated that fungal diversity was higher in healthy plants compared to diseased plants in each compartment. The alpha diversity index of fungi in the phyllosphere (LH) of healthy R. roxburghii, including Shannon, Chao-1, and Faith-pd indices, was 1.02, 81.50 and 10.42 higher than that of the diseased (LD), respectively. The fungi in the rhizosphere of healthy was 1.03, 59.00 and 5.56 higher than the diseased, respectively. The Shannon index of fungi in the root of healthy was 0.29 higher than that of diseased. Principal Coordinate analysis and ANOSIM results showed that there were significant differences in mycobiota composition between healthy and diseased phyllospheres (P < 0.05), as well as rhizosphere fungal community, while there was no significant difference between healthy and diseased roots (P > 0.05). Linear discriminant analysis effect size revealed that, at different taxonomic levels, there were significantly different taxa between the healthy and diseased plants in each compartment. The ecological guilds differed between healthy and diseased plants according to the FUNGuild analysis. For example, of healthy compared to diseased plants, the percentages of "lichenized-undefined saprotroph" were increased by 2.34%, 0.44%, and 1.54% in the phyllosphere, root, and rhizosphere, respectively. In addition, the plant pathogens existed in each compartment of R. roxburghii, but the percentages of "plant pathogen" were increased by 1.16% in the phyllosphere of diseased compared to healthy plants. Together, the ecological guild and co-occurrence network indicated that the potential pathogens of leaf spot were mainly found in the phyllosphere. This study explained one of pathogen origin of leaf spots of R. roxburghii by the microbial community ecology, which will provide the new insights for identification of plant pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call