Abstract

Amorphous FeSiB wires with positive magnetostriction are very perspective soft magnetic materials for many applications, e.g. torque, field or current sensors, pulse generators and highly sensitive magnetometers. The appearance of the Large Barkhausen Effect (LBE) during slow magnetization of FeSiB wires is described by means of the core-shell model assuming a residual radial tensile stresses in the as-cast state. In this work, the LBE during magnetization reversal of Fe77.5Si7.5B15 amorphous wire in the as-cast state was analysed. We have studied the kinetics of the reverse domain in the core region of the wire by means of Sixtus-Tonks method of two small pick-up coils placed in an asymmetric way with respect to the ends of the wire. We estimated the velocity of the reverse domain wall and the core region volume of the wire. It was found that the residual radial tensile stress distribution of the shell region strongly influences the magnetization reversal in the FeSiB wire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.