Abstract

AbstractThe Juno spacecraft, now in polar orbit about Jupiter, passes much closer to Jupiter's surface than any previous spacecraft, presenting a unique opportunity to study the largest and most accessible planetary dynamo in the solar system. Here we present an analysis of magnetometer observations from Juno's first perijove pass (PJ1; to within 1.06 RJ of Jupiter's center). We calculate the residuals between the vector magnetic field observations and that calculated using the VIP4 spherical harmonic model and fit these residuals using an elastic net regression. The resulting model demonstrates how effective Juno's near‐surface observations are in improving the spatial resolution of the magnetic field within the immediate vicinity of the orbit track. We identify two features resulting from our analyses: the presence of strong, oppositely signed pairs of flux patches near the equator and weak, possibly reversed‐polarity patches of magnetic field over the polar regions. Additional orbits will be required to assess how robust these intriguing features are.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.