Abstract

Members of the L1 family of neural cell adhesion molecules consist of multiple extracellular immunoglobulin and fibronectin type III domains that mediate the adhesive properties of this group of transmembrane proteins. In vertebrate genomes, these protein domains are separated by introns, and it has been suggested that L1-type genes might have been subject to exon-shuffling events during evolution. However, comparison of the human L1-CAM and the chicken neurofascin gene with the genomic structure of their Drosophila homologue, neuroglian, indicates that no major rearrangement of protein domains has taken place subsequent to the split of the arthropod and chordate phyla. The Drosophila neuroglian gene appears to have lost most of the introns that have been conserved in the human L1-CAM and the chicken neurofascin gene. Nevertheless, exon shuffling or the generation of new exons by mutational changes might have been responsible for the generation of additional, alternatively spliced exons in L1-type genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call