Abstract
Natural energy such as wind, wave and other natural vibrations is one of the high potential renewable energy sources. The Wells turbine is based on the use of bidirectional turbines, which act as axial-flow self-rectifying turbines that employs a symmetrical blade profile and rotating unidirectionally in reciprocating airflows generated by the air chamber to extract energy from vibrations. These topics have been extensively studied both numerically and experimentally such as research on the parameters of the effects of structure, angle of attack, blade shape, etc. In this paper, numerical simulation is carried out using commercially available tool Fluent for fluid dynamics analysis and focus on oscillating predictions, with particular attention to the behavior of the flow. Based on the Numerical Wave Tank (NWT) model is simulated in a two dimensional used in this model, which is constructed mainly based on the spatially averaged Navier Stokes equation with the k-ε model for simulating the turbulence and modeled with Volume of Fluid (VOF). Axial-flow turbines system and future development as well as the proposed limitations will be discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.