Abstract

The paper presents the analysis of hot deformation behavior of Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) alloy using the theory of dynamic material modeling (DMM) based on hot compression tests performed to a total true strain of 1 at the strain rates from 0.01 to 100 s−1 and at the temperatures within the range between 800 and 1100 °C. The processing maps according to the Prasad’s criterion were developed. The analysis of the processing maps allowed for the placement of domains describing the areas of potentially favorable combinations of hot deformation parameters. The microstructure observations of the investigated alloy specimens after hot deformation in stability and instability areas were conducted. The optimal processing parameters for numerical modeling of Ti-6246 alloy forging were selected based on processing maps. After complex analysis of the obtained results, microstructural observations and numerical modeling of forging of selected part, the forging tests of Ti-6246 alloy were realized. The obtained product quality assessment was carried out by computed tomography non-destructive testing.

Highlights

  • The Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) alloy belongs to the group of α + β alloys characterized by long-term high strength properties at elevated temperatures and susceptibility to heat treatment such as aging and solution treatment

  • The variation of the efficiency of power dissipation η is represented in the form of power dissipation map and depends on the change of strain rate, deformation temperature and strain rate sensitivity. This map displays the characteristics of power dissipation resulting from the microstructure evolution

  • The flow curves obtained from compression tests are characterized by a rapid increase of the flow stress at the beginning of plastic deformation till a peak stress is reached, and the subsequent decrease to a stable state (Fig. 2(a-c))

Read more

Summary

Introduction

The Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) alloy belongs to the group of α + β alloys characterized by long-term high strength properties at elevated temperatures and susceptibility to heat treatment such as aging and solution treatment. The variation of the efficiency of power dissipation η is represented in the form of power dissipation map and depends on the change of strain rate, deformation temperature and strain rate sensitivity. This map displays the characteristics of power dissipation resulting from the microstructure evolution. The instability maps are the variations of ξ with the temperature and strain rate They are indicative of the flow instability in deformation at different conditions and can be used to optimize the process parameters during thermomechanical processing of metallic materials

Experimental procedures
Results and discussion
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call