Abstract

Attention is given to the apparent optical depth method, a procedure for analyzing interstellar absorption lines. Observed absorption-line profiles are converted into profiles of apparent optical depth, and apparent column density per unit velocity. By comparing the latter for a given interstellar species having two or more absorption lines which differ in the product, the presence or absence of unresolved saturated structure in the profiles can be directly inferred. The method is illustrated using absorption-line data from the IUE satellite for the highly ionized gas toward HD 64760. Additional illustrations and a study of the method's accuracy are provided through a series of numerical simulations of multicomponent interstellar absorption situations. The method is compared to the standard growth curve method for deriving interstellar column densities. The principal value of the apparent optical depth method is that the absorption-line data are directly converted into a form that provides for direct scientific interpretations of the physical conditions in the interstellar absorbing medium as a function of velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.