Abstract

A difference equation with a cubic nonlinearity is examined. Using a phase plane analysis, both quasi-periodic and chaotically behaving solutions are found. The chaotic behavior is investigated in relation to heteroclinic and homoclinic oscillations of stable and unstable solution manifolds emanating from unstable periodic points. Certain criteria are developed which govern the existence of the stochastic behavior. An approximate solution technique is developed giving expressions for the quasi-periodic solutions close to a stable periodic point and the accuracy of these expressions are investigated. The stability of the solutions is examined and approximate local stability criteria are obtained. Stochastic excitation of a nonlinear difference equation is also considered and an approximate value of the second moment of the solution is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.