Abstract

Neuropathic pain (NP) is caused by diseases or dysfunction of nervous system and has a considerable negative impact on patients' quality of life. Opioid analgesics can be used for NP treatment. However, the effect of dezocine on NC remains unknown. In this study, we aimed to investigate the analgesic and intestinal effects of various doses of dezocine in rats with chronic constriction injuries (CCI). 100 rats were equally divided into 5 groups: the low (D1 group), medium (D2 group), and high (D3 group) doses of dezocine, and sham operation and model groups. The effects of dezocine on pain, analgesic effect, pain response, and tension and contraction frequencies of intestinal smooth muscles were assessed. With an increase in the dezocine dosage, the cumulative pain scores of rats decreased and analgesic effect significantly increased; mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) improved in varying degrees. The expression of the NP-related proteins glial fibrillary acidic protein (GFAP) and connexin 43 (Cx43) was also improved by dezocine treatment. The results of western blot and ELISA showed that IL-6, and monocyte chemotactic protein-1 (MCP-1) levels also decreased significantly with an increase in the dezocine dose, indicated that dezocine alleviated the inflammatory microenvironment. The dezocine exhibited no significant effect on the tension or contraction frequencies of intestinal smooth muscles of rats. In conclusion, the analgesic effect of dezocine on rats with CCI is dose-dependent and has little effect on the tension or contraction frequencies of intestinal smooth muscles. Our research proved the analgesic effect of dezocine in rats with CCI, and provided further insights into new therapies for NP treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call