Abstract

Bestatin, a small molecular weight dipeptide, is a potent inhibitor of various aminopeptidases as well as LTA4 hydrolase. Various physiological functions of Bestatin have been identified, viz.: (1) an immunomodifier for enhancing the proliferation of normal human bone marrow granulocyte–macrophage progenitor cells to form CFU-GM colonies; Bestatin exerts a direct stimulating effect on lymphocytes via its fixation on the cell surface and an indirect effect on monocytes via aminopeptidase B inhibition of tuftsin catabolism; (2) an immunorestorator and curative or preventive agent for spontaneous tumor; Bestatin alone or its combination with chemicals can prolongate the disease-free interval and survival period in adult acute or chronic leukemia, therefore, it was primarily marketed in 1987 in Japan as an anticancer drug and servers as the only marketed inhibitor of Aminopeptidase N (APN/CD13) to cure leukemia to date; (3) a pan-hematopoietic stimulator and restorator; Bestatin promotes granulocytopoiesis and thrombocytopoiesis in vitro and restores them in myelo-hypoplastic men; (4) an inhibitor of several natural opioid peptides. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, β-Endorphin, and so on, the anti-aminopeptidase action of Bestatin also allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. Although many scientific studies and great accomplishments have been achieved in this field, a large amount of problems are unsolved. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes.

Highlights

  • The analgesic activity of Bestatin as a potent Aminopeptidase N (APN) inhibitorReviewed by: Junming Wang, University of Mississippi Medical Center, USA Xiao-Ming Ou, University of Mississippi Medical Center, USA

  • The endogenous opioids comprising Met-Enkaphalins (ME), Leu-Enkaphalins (LE), β-Endorphin (β-EP), Dynorphin (Dyn), Kyotorphin (KTP), Endomorphin, (EM) and numerous others all belong to the family of pain-killing opioid peptides, which potently agitate opioid receptors to attain the antinociceptive effect (Frenk et al, 1978; Schwartz et al, 1981; Lee et al, 2004)

  • The relevant opioid receptors belong to the family of G-protein coupled receptors with at least four subtypes [κ-opioid receptor (KOR), μ-opioid receptor (MOR), δ-opioid receptor (DOR), and σ-opioid receptor] being found in the human central nervous system contributing to the analgesia

Read more

Summary

The analgesic activity of Bestatin as a potent APN inhibitor

Reviewed by: Junming Wang, University of Mississippi Medical Center, USA Xiao-Ming Ou, University of Mississippi Medical Center, USA. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, β-Endorphin, and so on, the antiaminopeptidase action of Bestatin allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes

Introduction
Functional mechanisms
HCl dioxane
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.