Abstract

We have previously found that the amyloid precursor protein (APP) of Alzheimer's disease is present on the surface of rat cortical neurons in culture, in a segmental pattern which first becomes evident after 24 hours and is fully developed by five days. As APP has previously been reported to have a short half-life in neuronal cell lines, and has been shown to contain binding sites for various extracellular matrix components within its extracellular domain, we hypothesized that APP would be associated with portions of neurites undergoing rapid structural change, such as growth cones. To test this hypothesis, we observed selected neurons by video time-lapse differential interference microscopy on 24-hour-old primary rat neuronal cultures for up to 45 minutes, followed by fixation and immunocytochemistry to ascertain surface APP distribution on those same neurons. In contrast to our predictions, surface APP was not found on active portions of neurites, even if the activity produced no net translational movement. This result indicates that surface APP is actually associated with stable portions of neurites, a conclusion that tallies with other recent results showing that neuronal surface APP has a longer half-life than general cellular APP, and is associated with markers of adhesion patches, which themselves are relatively stable structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.