Abstract

More than 20 years ago the amyloid precursor protein (APP) was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer’s disease (AD). The pathophysiology of AD, characterized by a massive loss of synapses, cognitive decline, and behavioral changes was in principle attributed to the accumulation of Aβ. Within the last decades, much effort has gone into understanding the molecular basis of the progression of AD. However, little is known about the actual physiological function of APPs. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone (PAZ) highlights APP as a hitherto unknown player within the setting of the presynapse. The molecular array of presynaptic nanomachines comprising the life cycle of synaptic vesicles, exo- and endocytosis, cytoskeletal rearrangements, and mitochondrial activity provides a balance between structural and functional maintenance and diversity. The generation of genetically designed mouse models further deciphered APP as an essential player in synapse formation and plasticity. Deletion of APP causes an age-dependent phenotype: while younger mice revealed almost no physiological impairments, this condition was changed in the elderly mice. Interestingly, the proteomic composition of neurotransmitter release sites already revealed substantial changes at young age. These changes point to a network that incorporates APP into a cluster of nanomachines. Currently, the underlying mechanism of how APP acts within these machines is still elusive. Within the scope of this review, we shall construct a network of APP interaction partners within the PAZ. Furthermore, we intend to outline how deletion of APP affects this network during space and time leading to impairments in learning and memory. These alterations may provide a molecular link to the pathogenesis of AD and the physiological function of APP in the central nervous system.

Highlights

  • More than 20 years ago the amyloid precursor protein (APP) was identified as the precursor protein of the amyloid beta (Aβ) peptide, the main component of senile plaques in brains affected by Alzheimer’s disease (AD)

  • By communicating with individual nanomachines, assemblers can control, navigate and trigger physiological functions at the presynaptic terminal. Their operations are based on an appropriate balance accompanied by a variety of interaction- and combination possibilities (e. g., soluble NSF-attachment receptor proteins (SNARE) complex formation and Ca2+-signaling)

  • Within the molecular array of presynaptic nanomachines APP can act as an individual nanomachine and assembler at once

Read more

Summary

Introduction

More than 20 years ago the amyloid precursor protein (APP) was identified as the precursor protein of the Aβ peptide, the main component of senile plaques in brains affected by Alzheimer’s disease (AD). The molecular array of presynaptic nanomachines comprising the life cycle of synaptic vesicles, exoand endocytosis, cytoskeletal rearrangements, and mitochondrial activity provides a balance between structural and functional maintenance and diversity. Allocating APP to the proteome of the structurally and functionally dynamic presynaptic active zone (PAZ) identified APP as a hitherto unknown player within the setting of the presynaptic nanomachines (Laßek et al, 2013).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.