Abstract

Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the Δamt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The Δamt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the Δamt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the Δamt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the Δamt1 Δamt2 double mutants. The Δamt1 single and Δamt1 Δamt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection.

Highlights

  • In eukaryotic organisms, reversible phosphorylation of proteins by protein kinase and phosphatase is well known to regulate various growth and development processes

  • The majority of protein methylation occurred at the arginine residues are catalyzed by protein arginine methyltransferases (PRMTs), which are divided into four major classes

  • [55] This study This study This study This study This study This study This study This study This study This study This study This study This study This study indicate that deletion of AMT1 is directly responsible for the growth defects observed in the mutant and AMT1 is important for normal vegetative growth in F. graminearum

Read more

Summary

Introduction

Reversible phosphorylation of proteins by protein kinase and phosphatase is well known to regulate various growth and development processes. Protein methylation is another form of post-translational modifications that play regulatory roles in various processes, including nucleo-cytoplasmic transport of proteins, transcriptional activation and elongation, mRNA precursors splicing, and signal transduction [1,2,3,4]. The majority of protein methylation occurred at the arginine residues are catalyzed by protein arginine methyltransferases (PRMTs), which are divided into four major classes. Type I and type II PRMTs catalyze asymmetric and symmetric v NG, NG-dimethylation of arginine residues, respectively [2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call