Abstract

A model is proposed to predict the amplitude of sound generated by an edgetone. The edgetone configuration under consideration consists of a flat plate located in the medial plane of a fully developed two-dimensional jet. The flow is modeled as follows. A periodic disturbance at the jet origin leads to the formation of an asymmetric vortex street which propagates downstream with a fixed convection velocity and wavelength. The vortex strength, convection velocity, and wavelength are determined as functions of the Strouhal number by applying conservation laws and kinematic relationships. The farfield acoustic pressure is calculated from a potential flow estimate of the periodic force on the edge. Predicted sound pressures are compared with experimental results and found to be in reasonable agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.