Abstract

The Rosensweig instability has a special character among the frequently discussed instabilities. One distinct property is the necessary presence of a deformable surface, and another very important fact is, that the driving force acts purely via the surface and shows no bulk effect. These properties make it rather difficult to give a correct weakly nonlinear analysis. In this paper we give a detailed derivation of the appropriate amplitude equation based on the hydrodynamic equations emphasizing the conceptually new procedures necessary to deal with the distinct properties mentioned above. First the deformable surface requires a fully dynamic treatment of the instability and the observed stationary case can be interpreted as the limiting case of a frozen-in characteristic mode. Second, the fact that the driving force is manifest in the boundary conditions, only, requires a considerable change in the formalism of weakly nonlinear bifurcation theory. To obtain the amplitude equations a combination of solubility conditions and (normal stress) boundary conditions has to be invoked in all orders of the expansions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.