Abstract

Environmental variability is a ubiquitous feature of every organism's habitat. However, the interaction between density dependence and those density-independent factors that are manifested as environmental noise is poorly understood. We are interested in the conditions under which noise interacts with the density dependence to cause amplification of that noise when filtered by the system. For a broad family of structured population models, we show that amplification occurs near the threshold from stable to unstable dynamics by deriving an analytic formula for the amplification under weak noise. We confirm that the effect of noise is to sustain oscillations that would otherwise decay, and we show that it is the amplitude and not the phase that is affected. This is a feature noted in several recent studies. We study this phenomenon in detail for the lurchin and LPA models of population dynamics. We find that the degree of amplification is sensitive to both the noise input and life-history stage through which it acts, that the results hold for surprisingly high levels of noise, and that stochastic chaos (as measured by local Lyapunov exponents) is a concomitant feature of amplification. Further, it is shown that the temporal autocorrelation, or "color," of the noise has a major impact on the system response. We discuss the conditions under which color increases population variance and hence the risk of extinction, and we show that periodicity is sharpened when the color of the noise and dynamics coincide. Otherwise, there is interference, which shows how difficult it is in practice to separate the effects of nonlinearity and noise in short time series. The sensitivity of the population dynamics to noise when close to a bifurcation has wide-ranging consequences for the evolution and ecology of population dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.