Abstract

AMP-activated protein kinase (AMPK) is an αβγ heterotrimer conserved throughout evolution and important for energy sensing in all eukaryote cells. AMPK controls metabolism and various cellular events in response to both hormones and changes in cellular energy status. The γ subunit senses intracellular energy status through the competitive binding of AMP and ATP. We show here that targeted disruption of the mouse AMPKγ1 gene (Prkag1) causes regenerative hemolytic anemia by increasing the sequestration of abnormal erythrocytes. Prkag1(-/-) mice displayed splenomegaly and iron accumulation due to compensatory splenic erythropoiesis and erythrophagocytosis. Moreover, AMPKγ1-deficient erythrocytes were highly resistant to osmotic hemolysis and poorly deformable in response to increasing shear stress, consistent with greater membrane rigidity. No change in cytoskeletal protein composition was observed; however, the phosphorylation level of adducin, a protein promoting the binding of spectrin to actin, was higher in AMPKγ1-deficient erythrocytes. Together, these results demonstrate that AMPKγ1 subunit is required for the maintenance of erythrocyte membrane elasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.