Abstract

Background: Phospholipids adsorbed to negatively-charged proteoglycan matrix form phospholipid (membrane), have negatively charged surface (-PO4-) and are hydrophilic. Strong adsorption and strong cohesion are necessary for phospholipids to provide a good lubricant. The surface energy of spherical lipid bilayers have "bell-curve" shaped has amphoteric character and lowest surface energy at a pH 7.4 ± 1 of the natural joint. Objectives: The amphoteric character of the natural surface of the articular cartilage was determined by measuring the surface energy of the model spherical bilayer lipid membrane. It was found that the friction (f) vs. pH 2.0 to 9.0 of the pair (cartilage/cartilage) has the amphoteric character by exposing "bell-curve" shaped with an isoelectric point (IEP). Methods: The friction coefficient (f) was measured with the sliding pin-on-disc tribotester the friction between two surfaces (cartilage/cartilage) pair. The method of interfacial tension measurements of the spherical lipid bilayer model vs the pH over the range 0.2 to 9.0 was used. Results: The dependence of friction coefficient between two cartilage surfaces on the pH over the range 2.0 to 9.0 is demonstrated by a “bell - curve” in Fig. 2(A). The surface energy of a model spherical bilayer lipid membrane vs. the pH has the character of a “bell - curve” with an (IEP) is shown in Fig. 2(B). Conclusion: The amphoteric effect on friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. The change in friction was consistently related to the change of charge density of an amphoteric surface.

Highlights

  • Phospholipids are amphoteric molecules containing both positive and negative charges depending on the functional groups, which is affected by the solution’s pH [1]

  • The amphoteric effect on friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution

  • In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces

Read more

Summary

Introduction

Phospholipids are amphoteric molecules containing both positive and negative charges depending on the functional groups, which is affected by the solution’s pH [1]. The surface energy of spherical lipid bilayers evident from phosphatidylcholine "bell-shaped curve" has amphoteric character and lowest surface energy at a pH 7.4 ± 1 of the natural joint. Phospholipids adsorbed to negatively-charged proteoglycan matrix form phospholipid (membrane), have negatively charged surface (-PO4-) and are hydrophilic. Strong adsorption and strong cohesion are necessary for phospholipids to provide a good lubricant. The surface energy of spherical lipid bilayers have "bell-curve" shaped has amphoteric character and lowest surface energy at a pH 7.4 ± 1 of the natural joint

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call