Abstract

The membrane location of the Semliki Forest virus glycoproteins E1, E2 and E3 was studied by protease treatment of (1) virus particles and (2) rough micro somes from cells infected with SF virus†. Protease treatment of virus particles removes all but the membrane-associated segments of the glycoproteins. Analyses of protease-treated SF virus membranes in 15% to 22.5% gradient acrylamide gels demonstrate the presence of three distinct peptide species with apparent molecular weights of 9000, 6000 and 5500. The 9000 and the 5500 molecular weight peptides have been aligned to the COOH-terminal end of E2 and the 6000 molecular weight peptide to the COOH-terminal end of El. The mapping of the peptides was done in a “Dintzis”-type of experiment (Dintzis, 1961) where we labelled the proteins of the virus with a gradient of [ 35S]methionine increasing towards their COOH-terminal end. Protease treatment of microsomes from cells infected with SF virus removes only those parts of the viral glycoproteins that are transversing the lipid bilayer. Analyses of such treated membranes in sodium dodecyl sulphate-containing gels show that a 3000 molecular weight piece is digested from the COOH-terminal end of p62, the cellular precursor of E2 and E3. The COOH-terminus of p62 is shown to be equivalent to that of E2. These results thus demonstrate that the two amphiphilic membrane proteins of SF virus, E1 and E2 (p62) are attached to the lipid bilayer by their COOH-terminal ends. The COOH-terminal end of p62 (E2) spans the microsomal membrane. The third membrane protein, E3, probably does not interact with membrane lipids but is bound to the virus on E1 and (or) E2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call