Abstract

The AMP-activated protein kinase (AMPK) pathway participates in the metabolic effects of contraction on muscle glucose uptake. We have shown that contraction increases both GLUT4 translocation to the cell surface and p38 mitogen-activated protein kinase (p38 MAPK) activity. The latter pathway may be involved in the activation of GLUT4. Here we investigated whether the AMPK activator AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. AICAR infusion into glucose-clamped rats increased muscle glucose uptake and GLUT4 translocation from an intracellular fraction to the plasma membrane but not to T-tubules. AICAR also caused recruitment of the transferrin receptor to the plasma membrane and increased [125I]-transferrin uptake in isolated muscle. AICAR treatment in vivo or in vitro activated both p38 MAPKalpha and beta (1.6- to 2.8-fold) in EDL muscles with a time course identical to that of stimulation of AMPK and glucose transport. The p38 MAPK inhibitor SB203580 abrogated the stimulatory effect of AICAR on glucose uptake. These results suggest that AICAR increases muscle glucose uptake by two mechanisms: 1) inducing selective recruitment of GLUT4 to the plasma membrane, and 2) activating p38 MAPKalpha and beta, which may be involved in the activation of GLUT4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.