Abstract
Amniotic fluid is a complex biological material that provides a unique window into the developing human. Residual amniotic fluid supernatant contains cell-free fetal RNA. The objective of this study was to develop an understanding of the amniotic fluid core transcriptome by analyzing the transcripts ubiquitously present in the amniotic fluid supernatant of euploid midtrimester fetuses. This was an in silico (computational) investigation using publicly available gene expression data previously produced by our group from 12 euploid midtrimester amniotic fluid samples. Functional analyses were performed using a web-based software analysis tool. Organ specificity was examined for each transcript using a gene expression atlas. For fetal organs not represented in the atlas, manual literature searching and the web-based software analysis tool were used to generate fetal organ-associated gene lists. There were 476 well-annotated genes present in 12 of 12 amniotic fluid samples. Functional analysis identified six physiologic systems represented in the amniotic fluid core transcriptome, including musculoskeletal and nervous system development and function and embryonic and organismal development. Mammalian target of rapamycin signaling was identified as a key canonical pathway. Twenty-three highly organ-specific transcripts were identified; six of these are known to be highly expressed in the fetal brain. Amniotic fluid cell-free fetal RNA can provide biological information on multiple fetal organ systems. The presence of fetal-brain specific transcripts in amniotic fluid suggests novel approaches to the study of developmental disorders that involve the central nervous system. The finding that the mammalian target of rapamycin signaling is enriched in midtrimester fetuses may have future applications in the study of fetal growth disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Obstetrics & Gynecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.