Abstract

Background. The mainly lethal ability of ammunition fragments on creatures is achieved by hitting the effective organs or key parts of the biological body with high-speed projectiles. How to efficiently and accurately obtain the projectile speed and hitting position coordinates when the fragment hits the creature after the ammunition blast is the key to the scientific evaluation of ammunition power. Materials and Methods. For the measurement of fragment velocity and hitting coordinates, a series of flexible film circuit sensors can be generated by printing comb-like circuits on polyethylene terephthalate substrates using silver paste printing technology. These sensors are cheap, flexible, and easy to fold and can be printed into different shapes according to the characteristics of the test target to simulate the biological key organs or lethal parts. At the same time, the software and hardware design of the high-speed data signal reading and processing module can realize the data rapidly recording and processing and quickly give the ammunition fragment parameter test results. Results. The test accuracy of the fragment velocity of the laser light screen target and the flexible circuit sensor is compared through the live-fire test. It is proved that the test accuracy of the flexible sensor based on the polymer substrate can meet the accuracy requirements. The flexible sensor based on the organ simulation can quickly give the accurate hit position of the fragment. Conclusion. The newly polymer substrate printed circuit sensor system is a new type of sensor used to replace the laser screen target, and the copper comb printed circuit in the ammunition power test, which can improve the parameter test accuracy, reduce the test consumption, and improve the test quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call