Abstract

The ability of synthetic peptides based on the amino-terminus of HIV-1 glycoprotein 41 000 (gp41) to fuse human erythrocytes was investigated. Previous site-directed mutagenesis studies have shown an important role for the N-terminal gp41 domain in HIV-fusion, in which replacement of hydrophobic amino acids with polar residues inhibits viral infection and syncytia formation. Here, a synthetic peptide (FP; 23 amino acid residues 519–541) corresponding to the N-terminus of HIV-1 gp41, and also a FP analog (FP526L/R) with Arg replacing Leu-526, were prepared with solid phase techniques. The lipid mixing and leakage of resealed ghosts triggered by these peptides were examined with fluorescence quenching techniques. Peptide-induced aggregation of human erythrocytes was studied using Coulter counter sizing and scanning electron microscopy (SEM). Using resealed erythrocyte ghosts at physiologic pH, FP induces rapid lipid mixing between red cell membranes at doses previously shown to hemolyze intact cells. FP also causes leakage from resealed ghosts, and promotes the formation of multicelled aggregates with whole erythrocytes. Contrarily, similar FP526L/R concentrations did not induce red cell lysis, lipid mixing, leakage or aggregation. Since the fusogenic potency of FP and FP526L/R parallels earlier gp41 mutagenesis studies showing that substitution of Arg for Leu-526 blocks fusion activity, these data suggest that the N-terminal gp41 domain in intact HIV participates in fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.