Abstract

An important part of the biosynthesis of proteoglycans is the epimerization of glycosaminoglycan chains. As a consequence of the conversion of chondroitin sulfate (CS) to dermatan sulfate (DS), the glycosaminoglycans become more flexible and enable DS to perform more sophisticated signaling functions. In a recent study, we generated a chimera (S222A) composed of a truncated form of a DS (decorin) and CS (CSF-1) containing proteoglycan and analyzed the influence of the core protein on the extent of epimerization. C-terminal truncation constructs from S222A enabled us to identify an amino acid segment that lies within the CSF-1 part which prevents DS synthesis. Co-localization experiments using S222A-HA and DCN-Flag showed different intracellular localizations for the proteoglycans during biosynthesis. A data base search revealed a sequence motif (TNWVP) within the CSF-1 moiety that is found to be important in other proteoglycans. A single substitution of tryptophan-216 to leucine (W216L) in the chimera S222A increased the amount of l-IdoA to 12-16%. Co-localization with an ER-marker demonstrated that the biosynthesis of recombinant decorin is similar to the chimera S222A and S222A(W216L) in HEK293 cells. Co-staining of S222A-HA and S222A(W216L)-Flag showed different intracellular localizations for the proteoglycans. A more detailed analysis of the glycosaminoglycans reflects a similar total sulfate content for S222A and S222A(W216L). The 4/6 sulfation ratio was similar for decorin and S222A, but altered for S222A(W216L). However, the binding of fibroblasts growth factor-1 to CS/DS was only partially dependent on epimerization. These results are consistent with the model in which the core protein, via the amino acid tryptophan, is responsible for routing to subcellular compartments with or without sufficient access to chondroitin-glucuronate 5-epimerase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.