Abstract

Abstract. The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.

Highlights

  • The American monsoon system (AMS) is the regional monsoon associated with summer rainfall in subtropical North and South America

  • The Met Office Hadley Centre (MOHC) modelling centre has submitted the output of two models for CMIP6: HadGEM3 GC3.1 is the latest version of the Global Coupled (GC) Met Office Unified Model (UM) and UKESM1, the new UK Earth System Model

  • The Atlantic Ocean shows a biased strong ascent south of the Equator and a biased weak ascent north of the Equator in the low-resolution simulations. These biases described above were found to be of similar magnitude in the coupled model simulations run at N96 resolution, for both historical and piControl experiments; these biases improved in the medium-resolution GC3 N216-pi and in the AMIP simulations (Fig. 5f, j)

Read more

Summary

Introduction

The American monsoon system (AMS) is the regional monsoon associated with summer rainfall in subtropical North and South America. The Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations of the North American monsoon misrepresented aspects of the seasonal cycle of precipitation and overestimated the peak monsoon rainfall (Geil et al, 2013; Sheffield et al, 2013). The majority of CMIP5 models were unable to represent the seasonal cycle of the MSD and the total annual rainfall in Central America and the Caribbean; most models did not show signs of two-peak bimodal distribution of precipitation (Ryu and Hayhoe, 2014; Colorado-Ruiz et al, 2018).

Observations and reanalysis data
Model data
Temperature and low-level winds
The ITCZ
Mean seasonal precipitation
The annual cycle of rainfall
Characteristics of convective activity
ENSO teleconnections
Findings
Summary and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call