Abstract

BackgroundSilibinin has been known for its role in anti-cancer and radio-protective effect. Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. Thus, this study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model.MethodsIn this study, we examined the ability of silibinin to mitigate lung injury in, and improve survival of, C57BL/6 mice given 13 Gy thoracic irradiation and silibinin treatments orally at 100 mg/kg/day for seven days after irradiation. In addition, Lewis lung cancer (LLC) cells were injected intravenously in C57BL/6 mice to generate lung tumor nodules. Lung tumor-bearing mice were treated with lung radiation therapy at 13 Gy and with silibinin at a dose of 100 mg/day for seven days after irradiation.ResultsSilibinin was shown to increase mouse survival, to ameliorate radiation-induced hemorrhage, inflammation and fibrosis in lung tissue, to reduce the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and to reduce inflammatory cell infiltration in the respiratory tract. In LLC tumor injected mice, lung tissue from mice treated with both radiation and silibinin showed no differences compared to lung tissue from mice treated with radiation alone.ConclusionsSilibinin treatment mitigated the radiation-induced lung injury possibly by reducing inflammation and fibrosis, which might be related with the improved survival rate. Silibinin might be a useful agent for lung cancer patients as a non-toxic complementary approach to alleviate the side effects by thorax irradiation.

Highlights

  • Silibinin has been known for its role in anti-cancer and radio-protective effect

  • Effects of silibinin treatment on the survival rate of irradiated mice To determine the effect of silibinin treatment after a single dose of radiation, C57BL/6 J mice were exposed to 13 Gy whole-thorax irradiation, and some groups were treated with silibinin after radiation

  • All mice irradiated with 13 Gy survived to 170 days following irradiation, the survival rate of this group dropped to 40% at 200 days after thorax irradiation (Figure 2B)

Read more

Summary

Introduction

Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. This study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model. Radiation-induced pulmonary damage to normal lung tissue can lead to early phase pneumonitis and late phase fibrosis months to years after irradiation, Son et al BMC Pulmonary Medicine (2015) 15:68. Previous research showed that the oral administration of silibinin produced a profound effect in protecting mice against radiation-induced mortality and preventing DNA damage in vitro [12]. The potential protective effect of silibinin against radiation-induced lung fibrosis is unknown. We administrated silibinin to irradiated C57BL/6 mice to examine the potential radioprotective effect of silibinin in the normal lung tissue. Changes in the number of inflammatory cells were evaluated in bronchoalveolar lavage fluid (BALF), and the histologic change of lung tissue was investigated to verify the inflammatory response and fibrosis at 80 and 200 days following thorax irradiation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.