Abstract
Sigma factor σ 28 (σ F, FliA, SigD) directs RNA polymerase to transcribe the genes required for flagellar biosynthesis and chemotaxis in many bacteria, including Bacillus subtilis, Legionella pneumophila, Salmonella typhimurium, Escherichia coli, Yersinia enterolytica, Treponema maltophilum and Pseudomonas aeruginosa. Remarkably the fliA gene from the extreme thermophile Aquifex aeolicus restored motility to the E. coli mutant at relatively low temperature, albeit partially. This clearly demonstrates that A. aeolicus σ 28 is able to direct RNA polymerase to E. coli σ 28-dependent promoters and take part in the complex interactions required to support transcription of the flagellar apparatus in vivo. The ability of A. aeolicus σ 28 to function with mesophilic components shows that critical functional interactions made by these sigma factors are well conserved, and are not dependent upon high temperature. We over-produced and purified the σ 28 protein and demonstrated binding to E. coli core RNA polymerase in vitro. In common with SigD from B. subtilis, but unlike most sigma factors, A. aeolicus σ 28 showed DNA binding activity in vitro but there was no evidence of sequence specificity. We note that A. aeolicus σ 28 is a good candidate for structural studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.