Abstract

We study several versions of the alternating direction method of multipliers (ADMM) for solving the convex problem of finding the distance between two ellipsoids and the nonconvex problem of finding the distance between the boundaries of two ellipsoids. In the convex case we present the ADMM with and without automatic penalty updates and demonstrate via numerical experiments on problems of various dimensions that our methods significantly outperform all other existing methods for finding the distance between ellipsoids. In the nonconvex case we propose a heuristic rule for updating the penalty parameter and a heuristic restarting procedure (a heuristic choice of a new starting for point for the second run of the algorithm). The restarting procedure was verified numerically with the use of a global method based on KKT optimality conditions. The results of numerical experiments on various test problems showed that this procedure always allows one to find a globally optimal solution in the nonconvex case. Furthermore, the numerical experiments also demonstrated that our version of the ADMM significantly outperforms existing methods for finding the distance between the boundaries of ellipsoids on problems of moderate and high dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.