Abstract

Using fluorescence spectroscopy, calorimetry and ESR the interactions of the phenothiazine derivative 2-trifluoromethyl-10-(4-[methylsulfonylamid]buthyl)-phenothiazine (FPhMS) with lipids were studied. Calorimetry showed biphasic effect of FPhMS on main phase transition of DPPC. At molar ratios up to 0.06 drug induced decrease of transition temperature and enthalpy, while at higher concentrations it caused subsequent increase of these parameters. For all concentrations studied we observed gradual broadening of transition peaks. Fluorescence polarization revealed that in FPhMS/lipid mixtures, order in bilayers is decreased in the gel state and increased in the liquid crystalline state. ESR experiment showed that at molar ratio of 0.06, FPhMS reduces the mobility of spin probes located in both polar and hydrophobic regions. Comparing observed effects with those reported for cholesterol/lipid mixtures, we conclude that at higher concentrations FPhMS presumably induces a new mode of bilayer packing. This structure is less co-operative than an unperturbed bilayer, but locally the mobility of lipid molecules is decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.