Abstract

The maintenance of ROS homeostasis, membrane biogenesis and recycling of molecules are common stress responses involving specific and complex regulatory network. Ubiquitination is an important and common mechanism which facilitates environmental adaptation in eukaryotes. In the present study we have cloned the AlRabring7, an E3-Ub-ligase, previously identified as AlRab7 interacting partner. The role of AlRabring7 for ubiquitinating AlRab7 and facilitating stress tolerance is analysed. The AlRabring7, with an open-reading frame of 702 bp encodes a protein of 233 amino acids, with RING-HC domain of 40 amino acids. In silico analysis shows that AlRabring7 is a C3HC4-type RING E3 Ub ligase. The protein - protein docking show interaction dynamics between AlRab7-AlRabring7-Ubiquitin proteins. The AlRab7 and AlRabring7 transcript showed up-regulation in response to different salts i.e: NaCl, KCl, CaCl2, NaCl + KCl, NaCl + CaCl2, imposing ionic as well as hyperosmotic stress, and also with oxidative stress by H2O2 treatment. Interestingly, the AlRabring7 showed early transcript expression with maximum expression in shoots on combinatorial stresses. The AlRab7 showed delayed and maximum expression with NaCl + CaCl2 stress treatment. The AlRab7 complements yeast ypt7Δ mutants and restored the fragmented vacuole. The in vitro ubiquitination assay revealed that AlRabring7 function as E3 ubiquitin ligase and mediates AlRab7 ubiquitination. Overexpression of AlRab7 and AlRabring7 independently and when co-transformed enhanced the growth of yeast cells during stress conditions. Further, the bimolecular fluorescence complementation assay shows the in planta interaction of the two proteins. Our results suggest that AlRab7 and AlRabring7 confers enhanced stress tolerance in yeast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call