Abstract

Abstract On summer days radiative heating of the Alps produces rising air above the mountains and a resulting inflow of air from the foreland. This leads to a horizontal transport of air from the foreland to the Alps, and a vertical transport from the boundary layer into the free troposphere above the mountains. The structure and the transports of this mountain–plain circulation in southern Germany (“Alpine pumping”) were investigated using an airborne 2-μm scanning Doppler lidar, a wind-temperature radar, dropsondes, rawinsondes, and numerical models. The measurements were part of the Vertical Transport and Orography (VERTIKATOR) campaign in summer 2002. Comparisons of dropsonde and lidar data proved that the lidar is capable of measuring the wind direction and wind speed of this weak flow toward the Alps (1–4 m s−1). The flow was up to 1500 m deep, and it extended ∼80 km into the Alpine foreland. Lidar data are volume measurements (horizontal resolution ∼5 km, vertical resolution 100 m). Therefore, they are ideal for the investigation of the flow structure and the comparison to numerical models. Even the vertical velocities measured by the lidar agreed with the mass budget calculations in terms of both sign and magnitude. The numerical simulations with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) (mesh size 2 and 6 km) and the Local Model (LM) of the German Weather Service (mesh size 2.8 and 7 km) reproduced the general flow structure and the mass fluxes toward the Alps within 86%–144% of the observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.