Abstract

ABSTRACTThe Alpha Ridge-Mendeleev Rise (AMR) is the major bathymetric feature in the Amerasia Basin of the Arctic Ocean. Its tectonic history is controversial due to its remote location in ice covered waters making data acquisition difficult, resulting in the lack of diagnostic data. Analysis of the wide-angle reflection/refraction data based on the compressional waves (P-waves) from the AMR indicates that its velocity/depth structure is typical of large igneous provinces (LIPs). LIPs can form on either oceanic or continental crust and can exhibit complex history of development. Here converted shear waves (S-wave) on the Alpha Ridge have been used to calculate Poisson’s ratios and many of measured values are within the felsic range in the upper crust. They are comparable to published S-waves from the Mendeleev Rise. They are also consistent with the results of Rayleigh-wave group-velocity analysis that indicate the Alpha Ridge in adjacent northern Canada has an intermediate composition. Based on magnetics, pseudogravity and volumetric considerations the High Arctic Large Igneous Province (HALIP) most closely resembles the Kerguelen Plateau, a LIP with a continental component. The geophysical characteristics of the AMR are compatible with a number of other LIPs that have continental affinities. A variety of offshore information from dredges and cores and onshore geological data support continental fragments incorporated in the AMR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call