Abstract

Alpha-melanocyte-stimulating hormone (alpha-MSH) is a part of the hormonal stress system with proven cardiovascular effects. Heart rate recovery (HRR) following exercise is strongly correlated to overall fitness and future adverse cardiovascular events. The current study examined the predictive value of alpha-MSH for HRR following exercise testing.Cardiopulmonary exercise testing (CPET) on a treadmill was used to measure HR and oxygen consumption (V̇O2) in 16 elite male wrestlers (W), 21 water polo player (WP) and 20 sedentary subjects (C) matched for age. Plasma levels of alpha-MSH were measured by radioimmunoassay technique in four phases of CPET: 1) 10 min pre-CPET at rest; 2) at the initation of CPET; 3) at peak CPET; and 4) at the third minute of recovery. The WP group had significantly higher HRR compared to than W and C groups, who did not have significantly different values. Significant difference in alpha-MSH measurements and patterns during CPET between groups was not observed (p > 0.05). When combining all three groups, we observed a significant correlation between V̇O2 recovery and alpha-MSH recovery/peak (r = -0.3, p = 0.022). HRR and ΔHRR/peak significantly correlated with alpha-MSH at all four measurment points (r = -0.4; p < 0.01 for all). On multiple regression analysis, which included anthropometric and hormonal measures, the best independent predictor of HRR and ΔHRR/peak was alpha-MSH during recovery (B = -1.0, -0.5; SE = 0.3, 0.1; CI = -1.5 to -0.4, -0.7 to -0.2; p = 0.001 respectively). In conclusion, alpha-MSH measured during exercise recovery holds predictive value for HRR and ΔHRR/peak, suggesting a contributing role to integrative regulation of overall cardiopulmonary performance. Condensed abstractPresent study examined the predictive value of alpha-melanocyte stimulating hormone (alpha-MSH) for heart rate recovery (HRR) in elite male wrestlers, water polo players and sedentary subjects matched for age. Alpha-MSH measured during exercise recovery holds predictive value for HRR and ΔHRR/peak, suggesting a contributing role to integrative regulation of overall cardiopulmonary performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.