Abstract

Abstract We report molecular gas mass estimates obtained from a stacking analysis of CO line emission in the ALMA Spectroscopic Survey (ASPECS) using the spectroscopic redshifts from the optical integral field spectroscopic survey by the Multi Unit Spectroscopic Explorer (MUSE) of the Hubble Ultra Deep Field (HUDF). Stacking was performed on subsets of the sample of galaxies classified by their stellar mass and position relative to the main-sequence relation (on, above, below). Among all the CO emission lines, from CO(2–1) to CO(6–5), with redshifts accessible via the ASPECS Band 3 and the MUSE data, CO(2–1) provides the strongest constraints on the molecular gas content. We detect CO(2–1) emission in galaxies down to stellar masses of . Below this stellar mass, we present a new constraint on the molecular gas content of main-sequence galaxies by stacking based on the MUSE detections. We find that the molecular gas mass of main-sequence galaxies continuously decreases with stellar mass down to . Assuming a metallicity-based CO–to–H 2 conversion factor, the molecular gas-to-stellar mass ratio from to ∼10.0 does not seem to decrease as fast as for , which is in line with simulations and studies at lower redshift. The inferred molecular gas density of MUSE-selected galaxies at is comparable with the one derived in the HUDF with a different CO selection. Using the MUSE data we recover most of the CO emission in our deep ALMA observations through stacking, demonstrating the synergy between volumetric surveys obtained at different wave bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call