Abstract

Bromus hordeaceus (sectionBromus, Poaceae), a predominantly self-fertilizing tetraploid (2n=28), is an annual weed native to the Mediterranean Basin, which now has a world-wide distribution. High morphological variation led to the recognition of four subspecies, three of which correlated with habitat-type. We examined genetic diversity at enzyme loci in 15 populations from the Mediterranean and the Atlantic region. Although sampled over a larger range of ecological and geographical conditions, the North-African populations appeared less genetically differentiated than populations from Brittany, suggesting higher levels of gene flow among the first ones (Nm=3.756 and 1.066 respectively). No genetic differentiation was encountered among the four subspecies. The populations were homozygous at homologous loci, suggesting high rates of selfing, but they frequently exhibited fixed intergenomic heterozygosity. The meiotic chromosome behaviour and disomic inheritance encountered are in accordance with the previously proposed allopolyploid origin of the species. The diploidsB. arvensis andB. scoparius have been previously implicated in the parentage ofB. hordeaceus on the basis of morphology and serology. We comparedB. hordeaceus with related diploid species belonging to the same section (sectionBromus) using different sources of data (flow cytometry, karyotypes, RAPD and DNA sequences). Molecular phylogeny based on internal transcribed spacer sequences of nuclear ribosomal genes provided the first clear scheme of relationships among monogenomic species of the section. A new hypothesis is proposed concerning the origin ofB. hordeaceus: We found that it diverged earlier than all other species of sectionBromus excluding the diploidB. caroli-henrici which is basal in this group. The 13 autapomorphies accumulated byB. hordeaceus, and the absence of intra-individual sequence heterogeneity are also consistent with the relatively ancient origin of the species within the section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.