Abstract

Galantamine, a drug for Alzheimer's disease, is a novel cholinergic agent with a dual mode of action, which inhibits acetylcholinesterase and allosterically modulates nicotinic acetylcholine receptors (nAChRs), as a result stimulates catecholamine neurotransmission. In the present study, we investigated whether galantamine exerts cognitive improving effects through the allosteric modulation of nAChR in the intracerebroventricular beta amyloid (Abeta)(25-35)-injected animal model of Alzheimer's disease. Galantamine (3 mg/kg p.o.) significantly increased the extracellular dopamine release in the hippocampus of saline- and Abeta(25-35)-injected mice. The effects of nicotine on the extracellular dopamine release were potentiated by galantamine, but antagonized by mecamylamine, a nAChR antagonist. Abeta(25-35)-injected mice, compared with saline-injected mice, could not discriminate between new and familiar objects in the novel object recognition test and exhibited less freezing response in the fear-conditioning tasks, suggesting Abeta(25-35) induced cognitive impairment. Galantamine improved the Abeta(25-35)-induced cognitive impairment in the novel object recognition and fear-conditioning tasks. These improving effects of galantamine were blocked by the treatment with mecamylamine, SCH-23390, a dopamine-D1 receptor antagonist, and sulpiride, a dopamine-D2 receptor antagonist, but not by scopolamine, a muscarinic acetylcholine receptor antagonist. This study provides the first in vivo evidence that galantamine augments dopaminergic neurotransmission within the hippocampus through the allosteric potentiation of nAChRs. The improving-effects of galantamine on the Abeta(25-35)-induced cognitive impairment may be mediated through the activation of, at least in part, dopaminergic systems, and the enhancement of dopamine release may be one of multiple mechanisms underlying the therapeutic benefit of galantamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.