Abstract

Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.