Abstract
Time synchronization between sensor nodes to reduce the end-to-end delay for critical and real time data monitoring can be achieved by cautiously monitoring the mobility of the mobile sink node in underwater wireless sensor networks. The Alive-in-Range Medium Access Control (ARMAC) protocol monitors the delay of sensitive, critical and real-time data. The idea evolves as it involves reduction in duty cycle, precise time scheduling of active/sleep cycles of the sensors, monitoring the mobility of the sink node with the selection of appropriate queues and schedulers. The model for the path loss due to attenuation of electromagnetic wave propagation in the sea water is explained. The three-path reflection model evaluating reflection loss from the air-water and watersand interfaces as a function of distance between sensors and water depth is introduced. The algorithms for effective path determination and optimum throughput path determination are elaborated. The results verify that implementation of the Alive-in-Range MAC protocol has reduced the total number of packets dropped, the average queue length, the longest time in queue, the peak queue length and the average time in queue significantly, making it relevant for critical and real-time data monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Telecommunications and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.