Abstract

The complex system of the CMS all-silicon Tracker, with 15148 silicon strips and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. We present results of the alignment of the full Tracker, in its final position, used for the reconstruction of the first collisions recorded by the CMS experiment. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. The geometry has been systematically monitored in the different periods of operation of the CMS detector. The results have been validated by several data-driven studies (laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.