Abstract

We prove that each member of the non-commutative nonlinear Schrödinger and modified Korteweg–de Vries hierarchy is a Fredholm Grassmannian flow, and for the given linear dispersion relation and corresponding equivalencing group of Fredholm transformations, is unique in the class of odd-polynomial partial differential fields. Thus each member is linearisable and integrable in the sense that time-evolving solutions can be generated by solving a linear Fredholm Marchenko equation, with the scattering data solving the corresponding linear dispersion equation. At each order, each member matches the corresponding non-commutative Lax hierarchy field which thus represent odd-polynomial partial differential fields. We also show that the cubic form for the non-commutative sine–Gordon equation corresponds to the first negative order case in the hierarchy, and establish the rest of the negative order non-commutative hierarchy. To achieve this, we construct an abstract combinatorial algebra, the Pöppe skew-algebra, that underlies the hierarchy. This algebra is the non-commutative polynomial algebra over the real line generated by compositions, endowed with the Pöppe product—the product rule for Hankel operators pioneered by Ch. Pöppe for classical integrable systems. Establishing the hierarchy members at non-negative orders, involves proving the existence of a ‘Pöppe polynomial’ expansion for basic compositions in terms of ‘linear signature expansions’ representing the derivatives of the underlying non-commutative field. The problem boils down to solving a linear algebraic equation for the polynomial expansion coefficients, at each order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.