Abstract
On a connected, oriented, smooth Riemannian manifold without boundary we consider a real scalar field whose dynamics is ruled by [Formula: see text], a second-order elliptic partial differential operator of Laplace type. Using the functional formalism and working within the framework of algebraic quantum field theory and of the principle of general local covariance, first we construct the algebra of locally covariant observables in terms of equivariant sections of a bundle of smooth, regular polynomial functionals over the affine space of the parametrices associated to [Formula: see text]. Subsequently, adapting to the case in hand a strategy first introduced by Hollands and Wald in a Lorentzian setting, we prove the existence of Wick powers of the underlying field, extending the procedure to smooth, local and polynomial functionals and discussing in the process the regularization ambiguities of such procedure. Subsequently we endow the space of Wick powers with an algebra structure, dubbed E-product, which plays in a Riemannian setting the same role of the time-ordered product for field theories on globally hyperbolic spacetimes. In particular, we prove the existence of the E-product and we discuss both its properties and the renormalization ambiguities in the underlying procedure. As the last step, we extend the whole analysis to observables admitting derivatives of the field configurations and we discuss the quantum Møller operator which is used to investigate interacting models at a perturbative level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.