Abstract

BackgroundE2HSA is a genetic fusion protein that consists of two tandem exendin-4 molecules that are covalently bonded to recombinant human serum albumin via a peptide linker. Previous studies have demonstrated that E2HSA significantly decreased blood glucose levels, improved β-cell function and promoted β-cell proliferation in diabetic db/dB mice. This study aimed to evaluate the benefits of E2HSA on glucose and lipid metabolism in a spontaneous diabetes animal model, KKAy mice.MethodsE2HSA was acutely administered at doses of 1, 3 and 9 mg/kg by subcutaneous injection in diabetic KKAy mice with exendin-4 (2 μg/kg) as a positive reference, and then the non-fasting blood glucose and food intake levels were dynamically monitored. In addition, different doses of E2HSA were injected once daily, as well as with exendin-4 twice daily, for 7 weeks to evaluate the effect on glucose and lipid metabolism, as well as the body weight, food and water intake.ResultsSingle injection of E2HSA decreased non-fasting blood glucose and food intake levels in a dose-dependent manner for 4 days and 2 days, respectively. Repeated injections with E2HSA significantly decreased variations in blood glucose levels with a reduction of HbA1c levels by 1.6% at a 9 mg/kg dose, simultaneously increased fasting blood insulin levels, inhibited fasting blood glucagon levels, improved the impaired oral glucose tolerance and enhanced glucose infusion rate, which is the gold standard for evaluating β-cell function. Moreover, repeated injections with E2HSA also ameliorated the dyslipidemia and reduced body weight, food and water intake in diabetic KKAy mice.ConclusionsE2HSA significantly reduced blood glucose levels over a prolonged duration, enhanced β-cell function, and ameliorated dyslipidemia and obesity in diabetic KKAy mice. Thus, E2HSA may be a new candidate for the treatment of type 2 diabetes.

Highlights

  • E2HSA is a genetic fusion protein that consists of two tandem exendin-4 molecules that are covalently bonded to recombinant human serum albumin via a peptide linker

  • Large fluctuations in blood glucose levels has been identified as the biggest culprit in causing diabetic complications, and strictly restraining blood glucose levels by keeping glycated hemoglobin (HbA1c) levels < 7.0% has been the main outcome for diabetes treatment [1]

  • Repeated treatments with exendin-4 (2 μg/kg) controlled the non-fasting blood glucose levels during the first 3 weeks and the fasting blood glucose levels during the first 2 weeks, but the (Glycated hemoglobin) (HbA1c) levels were only decreased by 0.7%

Read more

Summary

Introduction

E2HSA is a genetic fusion protein that consists of two tandem exendin-4 molecules that are covalently bonded to recombinant human serum albumin via a peptide linker. Previous studies have demonstrated that E2HSA significantly decreased blood glucose levels, improved β-cell function and promoted β-cell proliferation in diabetic db/dB mice. This study aimed to evaluate the benefits of E2HSA on glucose and lipid metabolism in a spontaneous diabetes animal model, KKAy mice. Type 2 diabetes mellitus (T2DM) has become a global epidemic disease that is associated with both increased economic and clinical burdens, which causes high mortality rates due to related micro- and macro-vascular complications, such as cardiovascular disease, kidney failure, amputations and blindness. GLP-1 performs a hypoglycemic function by simultaneously enhancing insulin secretion and inhibiting glucagon secretion. Unlike the aforementioned anti-diabetic drugs, GLP-1 has an advantage in inducing weight loss and only rarely causing hypoglycemia [2]. GLP-1 provides evident protection for pancreatic islet β cells that suppresses or delays progressive failure and improves the homeostasis of glucose metabolism [3]. Liraglutide, a GLP-1 analog, has been reported to increase β-cell mass by directly regulating cell kinetics and suppressing both oxidative and endoplasmic reticulum stresses [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call