Abstract

Hydropower emits less carbon dioxide than fossil fuels but the lower albedo of hydropower reservoirs compared to terrestrial landscapes results in a positive radiative forcing offsetting some of the negative radiative forcing by hydroelectricity generation. The cumulative effect of this lower albedo has not been quantified. Here we show, by quantifying the difference in remotely sensed albedo between globally distributed hydropower reservoirs and their surrounding landscape, that 19 % of all investigated hydropower plants required 40 years and more for the negative radiative forcing from the fossil fuel displacement to offset the albedo effect. The length of these break-even times depends on the specific combination of climatic and environmental constraints, power plant design characteristics and country-specific electricity carbon intensities. We conclude that future hydropower plants need to minimize the albedo penalty in order to make a meaningful contribution towards limiting global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.