Abstract

Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1β. Lastly, using Nlrp3-/- mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.