Abstract

Aerococcus viridansl-lactate oxidase (avLOX) is a biotechnologically important flavoenzyme that catalyzes the conversion of L-lactate and O₂ into pyruvate and H₂O₂. The enzymatic reaction underlies different biosensor applications of avLOX for blood L-lactate determination. The ability of avLOX to replace O₂ with other electron acceptors such as 2,6-dichlorophenol-indophenol (DCIP) allows the possiblity of analytical and practical applications. The A95G variant of avLOX was previously shown to exhibit lowered reactivity with O₂ compared to wild-type enzyme and therefore was employed in a detailed investigation with respect to the specificity for different electron acceptor substrates. From stopped-flow experiments performed at 20 °C (pH 6.5), we determined that the A95G variant (fully reduced by L-lactate) was approximately three-fold more reactive towards DCIP (1.0 ± 0.1 × 10(6) M(-1) ·s(-1) ) than O₂, whereas avLOX wild-type under the same conditions was 14-fold more reactive towards O₂(1.8 ± 0.1 × 10(6) m(-1) ·s(-1)) than DCIP. Substituted 1,4-benzoquinones were up to five-fold better electron acceptors for reaction with L-lactate-reduced A95G variant than wild-type. A 1.65-Å crystal structure of oxidized A95G variant bound with pyruvate was determined and revealed that the steric volume created by removal of the methyl side chain of Ala95 and a slight additional shift in the main chain at position Gly95 together enable the accomodation of a new active-site water molecule within hydrogen-bond distance to the N5 of the FMN cofactor. The increased steric volume available in the active site allows the A95G variant to exhibit a similar trend with the related glycolate oxidase in electron acceptor substrate specificities, despite the latter containing an alanine at the analogous position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call