Abstract

Abstract —The Akhunovo–Petropavlovsk area of the late Paleozoic granite magmatism is located in the northeast of the Magnitogorsk megazone (MMZ) in the South Urals. It is a series of successively intruded rocks (Petropavlovsk, Akhunovo, Karagai, and Uiskii Bor intrusions) differing not only in composition, the depth of formation, and ore content but also in the relationship with magmatic and fluid sources and in magma generation mechanisms. This area differs significantly in the number and composition of intrusive complexes from the igneous rocks and ore associations in the central and western parts of the MMZ. The granite magmatism pulses alternated with the collisional shearing/spreading and rifting stages. The Petropavlovsk mesoabyssal granite intrusion (347.0 ± 8.6 Ma) formed at the early stage of the area evolution. Its rocks are similar in composition to a suprasubductional series (melting products of a mantle source enriched not only in water fluid but also in Cl). Later (310–306 Ma), at the collision–compression stage, crustal intrusion of the Akhunovo–Karagai granodiorite–granite complex took place. The intruded rocks are similar to the Middle Urals continental-margin gabbro-tonalite–grano-diorite–granite plutons (320–290 Ma) bearing large gold–sulfide–quartz deposits (Berezovskoe etc.). At the final stage of the area evolution, during the transition from continental-margin regime to hard collision between the East European and Kazakhstan continents (late Carboniferous) and the intense shearing/spreading deformations, the Uiskii Bor granosyenite–granite intrusion (304.0 ± 4.8 Ma) rich in K and HFSE formed. Granite intrusions of this type have been revealed in the MMZ for the first time. Thus, the granitoid complexes of the Akhunovo–Petropavlovsk area formed under changes in geodynamic settings and are characterized by different compositions, depths of occurrence, and genesis. This permits us to consider the area a typical continental-margin center of the long-term mantle–crust interaction, where magma generation proceeded at different mantle and crust levels, with the participation of both suprasubductional and enriched plume-related rift sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call