Abstract

Many process plant installations include cylindrical vessels which contain high temperature liquids with the remaining space above occupied by vapour or a vapour/gas mixture. If such a pressure vessel were to be ruptured, missiles (i.e. fragments) may be generated and equipment in the vicinity put at risk. There is a particular threat from large missiles. Theoretical models have been developed to describe the peak velocity achieved by end-caps and `rocket' missiles generated by the circumferential failure of a vessel. The end-cap missile model assumes that the action of the escaping vapour/liquid on the end-cap is analogous to a missile driven by a gas jet from a constant pressure source. The `rocket' missile velocities are derived via a simple approximation to the impulse applied to the internal face of the closed end of the `rocket'. Experiments have confirmed the validity of these approaches and upper limit values to end-cap and `rocket' velocities have been defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.