Abstract

The ever increasing availability of supercomputing resources led computer-based materials science into a new era of high-throughput calculations. Recently, Pizzi et al. introduced the AiiDA framework that provides a way to automate calculations while allowing to store the full provenance of complex workflows in a database. We present the development of the AiiDA-KKR plugin that allows to perform a large number of ab initio impurity embedding calculations based on the relativistic full-potential Korringa-Kohn-Rostoker Green function method. The capabilities of the AiiDA-KKR plugin are demonstrated with the calculation of several thousand impurities embedded into the prototypical topological insulator Sb2Te3. The results are collected in the JuDiT database which we use to investigate chemical trends as well as Fermi level and layer dependence of physical properties of impurities. This includes the study of spin moments, the impurity’s tendency to form in-gap states or its effect on the charge doping of the host-crystal. These properties depend on the detailed electronic structure of the impurity embedded into the host crystal which highlights the need for ab initio calculations in order to get accurate predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call